Demoivre’s Theorem

Demoivre’s Theorem:

The theorem is helpful in finding out the n-th root of a complex number (where n is a rational number). The statement consists of two steps:

(I) If n is an integer or zero, then (cos θ + i sin θ)n = cos nθ + i sin nθ.

(II) If n is a non-integral rational number, then cos nθ + i sin nθ is one of the values of (cos θ + i sin θ)n.

Proof (I):

Case 1:- If n =0, then
(cos θ + i sin θ)n = (cos θ + i sin θ)0 = 1 = 1 + 0 . i
= cos 0 + i sin 0 = cos (0, θ) + i sin (0, θ)
Case 2:- If n is a positive integer, then it is wise to proceed by the method of mathematical induction. The theorem is verified to be true for n = 1 as (cos θ + i sin θ)1 = cos θ + i sin θ = cos 1.θ + i sin 1.θ.

Let us assume that the theorem is true for a positive integer n = m ≥ 1.

Then, (cos θ + i sin θ)m = cos mθ + i sin mθ.

Now, (cos θ + i sin θ)m + 1
= (cos θ + i sin θ)m (cos θ + i sin θ)
= (cos mθ + i sin mθ) (cos θ + i sin θ)
= (cos mθ cos θ – sin mθ sin θ) + i (sin mθ cos θ + cos mθ sin θ)
= cos (mθ + θ) + i sin (mθ + θ)
= cos (m + 1)θ + i sin (m + 1)θ

Thus the theorem is true for n = m + 1.
Hence, by induction, the theorem is true for all positive integers.
Case 3:- If n is a negative integer, let n = -m, where m ∈ N. Then,
(cos θ + i sin θ)-m
= 1/(cos θ + i sin θ)m
= 1/(cos mθ + i sin mθ)
= (cos mθ – i sin mθ)/[(cos mθ + i sin mθ) (cos mθ – i sin mθ)]
= [cos (-mθ) + i sin (-mθ)]/(cos2 mθ + sin2 mθ)
= cos (-mθ) + i sin (-mθ)
= cos nθ + i sin nθ (∵ n = -m)

Thus the theorem is true for any integer or zero.

Proof (II): When n is a non-integral rational number, then let us take n = p/q, where p and q ∈ I and q > 0.

Then, (cos pθ/q + i sin pθ/q)q = cos (pθ/q)q + i sin (pθ/q)q = cos pθ + i sin pθ

∴ cos pθ/q + i sin pθ/q is one of the values of (cos pθ + i sin pθ)1/q

Thus, cos pθ/q + i sin pθ/q is one of the values of {(cos θ + i sinθ) p}1/q

⇒ cos pθ/q + i sin pθ/q is one of the values of (cos θ + i sinθ)p/q

Thus, (cos nθ + i sin nθ) is one of the values of (cos θ + i sinθ)n, where n is a non-integral rational index.

Remarks:

1:- (cos θ + i sin θ)-n = cos (-nθ) + i sin (-nθ) = cos nθ – i sin nθ.

2:- (sin θ + i cos θ)n
= {i (cos θ – i sin θ)}n
= in {cos (-θ) + i sin (-θ)}n
= in {cos (-nθ) + i sin (-nθ)}
= in (cos nθ – i sin nθ)

3:- 1/(cos θ + i sin θ)
= (cos θ + i sin (θ)-1
= cos (-θ) + i sin (-θ)
= cos θ – i sin θ

4:- (cos θ + i sin θ) (cos Φ + i sin Φ) = cos (θ + Φ) + i sin (θ + Φ)

Complex Numbers OperationsSeebeck Effect
Square Roots of Complex NumbersThomson Effect
Cube Roots of UnityRutherford Gold Foil Experiment
Heights and Distances in TrigonometryStates of Matter– NIOS

Comments (No)

Leave a Reply